The extent and severity of vascular leakage as evidence of tumor aggressiveness in high-grade gliomas.

نویسندگان

  • Yue Cao
  • Vijaya Nagesh
  • Daniel Hamstra
  • Christina I Tsien
  • Brian D Ross
  • Thomas L Chenevert
  • Larry Junck
  • Theodore S Lawrence
چکیده

Magnetic resonance imaging reveals heterogeneous regions within high-grade gliomas, such as a contrast-enhanced rim, a necrotic core, and non-contrast-enhanced abnormalities. It is unclear which of these regions best describes tumor aggressiveness. We hypothesized that the vascular leakage volume, reflecting disorganized angiogenesis typical of glioblastoma, would be a strong predictor of clinical outcome. The FLAIR tumor volume, post-gadolinium T1 tumor volume, tumor vascular leakage volume determined by dynamic contrast-enhanced imaging, and volume of the contrast-enhanced rim seen on post-gadolinium T1-weighted images were defined for 20 patients about to undergo treatment for newly diagnosed high-grade gliomas. The potential for imaging characteristics to improve prediction of survival and time to progression over clinical variables was tested by using Cox regression analysis. Single-variable Cox regression analysis of each of the four tumor subvolumes revealed that the vascular leakage volume was the only significant predictor of survival. When the joint effect of clinical variables and the vascular leakage volume were tested for prediction of survival, only the age and the vascular leakage volume were selected as significant predictors. However, when time to progression was tested as a dependent variable, both the vascular leakage volume and the vascular permeability were selected as copredictors, along with surgical status. Our findings suggest that for patients with high-grade glioma, time to progression after radiation therapy is influenced by both underlying biological aggressiveness (vascularity) and volume of aggressive tumor. In contrast, survival depends chiefly on the volume of aggressive tumor at the time of presentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vascular Mimicry Expression in Invasive Ductal Carcinoma; A New Technique for Prospect of Aggressiveness

Background & Objective: In vascular (vasculogenic) mimicry (VM), tumoral cells mimic the endothelial cells and form the extracellular matrix-rich tubular networks. It has been proposed that VM is more extensive in aggressive tumors. This study was designed to investigate the rate of VM expression in the stromal cells of invasive ductal carcinoma (IDC) and to find its relationsh...

متن کامل

Initial Experience with Brain Mapping under Awake Craniotomy for Resection of Insular Gliomas of the Dominant Hemisphere

Background & Importance: Insular lobe is located at the depth of sylvian fissure and is hidden by frontal, temporal and parietal lobes in close vicinity of internal capsule and basal ganglia and adjacent to the speech centers in the dominant hemisphere. Thus, radical resection of insular gliomas can be even more difficult. Brain mapping techniques can be used to maximize the extent of...

متن کامل

Diffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index

Introduction: The most common primary tumors of brain are gliomas and tumor grading is essential for designing proper treatment strategies. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. The purpose of this study was to investigatethe role of fiber density index (FDi) by means of diffusion tensor imaging (DTI) (as a noninvasive method) in glial...

متن کامل

تعیین دقت تصویربرداری تشدید مغناطیسی دیفیوژن تنسور در درجه‌بندی تومورهای گلیال بر اساس فراکشنال آنیزوتروپی

Background and purpose: The most common primary tumors of the central nervous system are gliomas. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. Accurate assessment of tumor grade is important for determination of appropriate treatment strategies. The purpose of this study was to evaluate the role of Diffusion Tensor imaging (as a non-invasive ...

متن کامل

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 66 17  شماره 

صفحات  -

تاریخ انتشار 2006